Il professor Guido Sciavicco
Il professor Guido Sciavicco

Ferrara, 14 settembre 2021 - Analizzare un colpo di tosse, rendendone visibili le onde sonore, per identificare la positività al virus Sars-Cov-2: funziona così  il nuovo sistema messo a punto dal Guido Sciavicco, docente del dipartimento di Matematica e Informatica dell’Università di Ferrara.

Partendo dai dati raccolti dall’Università di Cambridge nel 2020 ovvero diverse centinaia di registrazioni di colpi di tosse di persone asintomatiche di cui era nota la positività o meno al Covid-19, i ricercatori sono riusciti a isolare le caratteristiche che contraddistinguono una persona positiva, a ricrearle e anche a riconoscerle nella tosse di altri pazienti.

“Abbiamo reso il suono visibile, per evidenziare chiaramente quali siano le frequenze e la potenza che caratterizzano i pattern tipici della tosse di un positivo, anche se asintomatico – spiega Sciavicco -. Abbiamo poi isolato queste caratteristiche ricorrenti e le abbiamo ricercate e riconosciute in ulteriori registrazioni di colpi di tosse dei campioni forniti, di cui era nota la positività, per validare il nostro sistema di diagnosi”.

La parte “soddisfacente dello studio è che siamo riusciti a compiere un passo ulteriore alla diagnosi, risultato sicuramente interessante ma che per essere completamente validato statisticamente avrebbe bisogno di un numero di campioni maggiori: con questo risultato noi ora sappiamo come ‘suona’ la positività al Covid nel colpo di tosse, molto utile per la diagnosi da parte dei medici”.

Il metodo di riconoscimento si basa su una tecnica di machine learning di nuova concezione, chiamato modal learning con supervisione:
“Si parte da una base di dati etichettati in modo sicuro: in questo caso, sapevamo con esattezza se il colpo di tosse che stavamo ascoltando era di un paziente positivo o no – rivela Sciavicco-. Fornendo questi dati e la loro etichetta al computer, gli si danno strumenti per imparare a distinguere la positività o negatività, analizzando esclusivamente la traccia audio di un colpo di tosse, senza avere informazioni aggiuntive sulla storia clinica del paziente”.

Il learning modale “permette una maggiore espressività rispetto a quello classico, e dunque evidenzia pattern più complessi. Per la parte di insegnamento alla macchina è stata usata solo una parte dei campioni forniti dall’Università di Cambridge, mentre i restanti dati sono serviti per la parte di validazione della nostra metodologia”.

A confronto con altre tecniche e linguaggi di machine learning, non solo questo metodo è più economico dal punto di vista delle risorse di calcolo, ma il vero punto di forza è la capacità del computer di giustificare la decisione presa: non è più solo il risultato di un lungo calcolo computazionale, ma una scelta “ragionata” della macchina stessa.

L’accuratezza di tale tecnologia permetterebbe di sostituire o affiancare con un semplice microfono gli attuali metodi non invasivi, per esempio la misurazione della temperatura corporea, la cui affidabilità non è molto alta. Inoltre sarebbe possibile pensare a un computer che si comporta come un medico durante una visita di routine: il team del professor Sciavicco sta infatti valutando potenziali implementazioni di questa ricerca sotto forma di app per il prossimo futuro. Basterebbe infatti tossire per 15 secondi al microfono, in modo molto simile a quello che facciamo durante l’auscultazione dei polmoni.